A Systematic Literature Review on the Application of Artificial Intelligence in Translation: Challenges, Innovations, and Impact Across Diverse Fields

Authors

  • Muhammad Hasyimsyah Batubara STAIN Mandailing Natal, Panyabungan, Madina, Sumut, Indonesia
  • Berlin Sibarani Universitas Negeri Medan, Medan, Sumut, Indonesia
  • Sri Minda Murni Universitas Negeri Medan, Medan, Sumut, Indonesia
  • Siti Aisyah Ginting Universitas Negeri Medan, Medan, Sumut, Indonesia

DOI:

https://doi.org/10.37249/jlllt.v5i1.934

Keywords:

Artificial Intelligence, Translation, Challenge, Innovation, Impact

Abstract

With the ongoing expansion of digital technology and global communication, the need for rapid and accurate language translation has become increasingly important. Artificial intelligence has led to significant progress in translation, especially through innovations such as Neural Machine Translation (NMT) and Large Language Models (LLMs). Despite ongoing advancements, these translation systems often fall short in areas such as gender fairness, maintaining accuracy from the source language, and recognizing cultural subtleties. This paper systematically analyzes 29 selected research works to highlight the challenges, novel contributions, and potential implications of AI-assisted translation. The approach used was a systematic review. Results show that Artificial intelligence has improved translation efficiency and identified new opportunities in global trade, research, healthcare, and cross-cultural communication. Yet it needs to tackle several issues, such as algorithmic bias, challenges and nuances in cultural retention, and ethical challenges in the human translation industry. The results of this analysis underscore the need for more comprehensive, precise, and ethical AI models, as well as the importance of AI-human collaboration to achieve the highest-quality translations. This study helps to understand the development of AI-based translation and develop methods for its long-term usage.

Downloads

Download data is not yet available.

References

Alowedi, N. A., & Al-Ahdal, A. A. M. H. (2023). Artificial Intelligence-based Arabic-to-English machine versus human translation of poetry: An analytical study of outcomes. (2023). Journal of Namibian Studies: History, Politics, Culture, 33, 1523–1538.

https://doi.org/10.59670/jns.v33i.800

Avina, V. D., Amiruzzaman, M., Amiruzzaman, S., & Ngo, L. B. (2023). An AI-based framework for translating American Sign Language to English and vice versa. Information, 14(10), 569.

https://doi.org/10.3390/info14100569

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. arXiv preprint, arXiv:1409.0473.

https://doi.org/10.48550/arXiv.1409.0473

Baker, M. (2018). In other words: A coursebook on translation (3rd ed.). London: Routledge.

Baker, M., & Saldanha, G. (Eds.). (2020). Routledge Encyclopedia of Translation Studies (3rd ed.). London: Routledge.

Banimelhem, O., & Amayreh, W. (2023). Is ChatGPT a good English-to-Arabic machine translation tool? 2023 14th International Conference on Information and Communication Systems (ICICS), 1-6.

http://dx.doi.org/10.1109/ICICS60529.2023.10330525

Barocas, S., Hardt, M., & Narayanan, A. (2019). Fairness and machine learning: Limitations and opportunities. New York: MIT Press.

Bielsa, E., & Bassnett, S. (2009). Translation in global news. London: Routledge.

Binns, R. (2018). Fairness in machine learning: Lessons from political philosophy. Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency, 149–159. https://doi.org/10.1145/3287560.3287583

Bostrom, N., & Yudkowsky, E. (2014). The ethics of artificial intelligence. In K. Frankish & W. M. Ramsey (Eds.), The Cambridge Handbook of Artificial Intelligence (pp. 316–334). Cambridge: Cambridge University Press.

Bowker, L. (2020). Computer-aided translation: An introduction. London: Routledge.

Bowker, L., & Fisher, D. (2010). Computer-aided translation tools: Technologies and applications. Amsterdam: John Benjamins.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901.

https://doi.org/10.48550/arXiv.2005.14165

Brynjolfsson, E., Hui, X., & Liu, M. (2019). Does machine translation affect international trade? Evidence from a large digital platform. Management Science, 65(12), 5449-5460.

https://doi.org/10.1287/mnsc.2019.3388

Carl, M., Bangalore, S., & Schaeffer, M. J. (2016). New directions in empirical translation process research. Cham: Springer.

Chesterman, A. (2016). Memes of Translation: The spread of ideas in translation theory (2nd ed.). Amsterdam: John Benjamins.

Chesterman, A., & Wagner, E. (2014). Can theory help translators? A dialogue between the ivory tower and the wordface (2nd ed.). London: Routledge.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using an RNN encoder-decoder for statistical machine translation. arXiv preprint, arXiv:1406.1078.

https://doi.org/10.48550/arXiv.1406.1078

Clusmann, J., Kolbinger, F. R., Muti, H. S., Carrero, Z. I., et al. (2023). The future landscape of large language models in medicine. Communications Medicine, 3(1), 141.

https://doi.org/10.1038/s43856-023-00370-1

Costa-jussà, M. R., Cross, J., Çelebi, O., Elbayad, M., et al. (2022). No Language Left Behind: Scaling human-centered machine translation. arXiv preprint arXiv:2207.04672.

https://arxiv.org/abs/2207.04672

Cronin, M. (2013). Translation in the digital age. London: Routledge.

Díaz-Millón, J., Sánchez-Gijón, P., & Kenny, D. (2021). New perspectives on translation and technology. London: Routledge.

Dignum, V. (2019). Responsible artificial intelligence: How to develop and use AI in a responsible way. Cham: Springer.

Drugan, J. (2017). Quality in professional translation: Assessment and improvement. London: Bloomsbury.

Dun?er, I., Seljan, S., & Pavlovski, M. (2020). Automatic machine translation of poetry and a low-resource language pair. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), 924-929.

https://doi.org/10.23919/MIPRO48935.2020.9245342

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through awareness. Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, 214–226.

https://doi.org/10.1145/2090236.2090255

Ehsan, U., Harrison, B., Chan, L., & Riedl, M. O. (2018). Rationalization: A neural machine translation approach to generating natural language explanations. Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 1(1), 81-87.

https://doi.org/10.1145/3278721.3278736

Ess, C. (2013). Digital media ethics (2nd ed.). Cambridge: Polity Press.

Feigenbaum, E. A. (2015). The rise of artificial intelligence: The road to AI revolution. New York: Simon & Schuster.

Feng, H., Xie, S., Wei, W., Lv, H., & Lv, Z. (2023). Deep learning in computational linguistics for Chinese language translation. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, 1-2.

https://doi.org/10.1145/3519386

Floridi, L. (2013). The ethics of information. Oxford: Oxford University Press.

Gambier, Y., & Van Doorslaer, L. (Eds.). (2021). Handbook of translation studies (Vol. 5). Amsterdam: John Benjamins.

Garcia, I. (2019). Machine translation for everyone: Empowering users in the age of artificial intelligence. London: Routledge.

Gile, D. (2009). Basic concepts and models for interpreter and translator training (2nd ed.). Amsterdam: John Benjamins.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press.

Guerberof-Arenas, A., & Asimakoulas, D. (2023). Creative skills development: training translators to write in the era of AI. HERMES - Journal of Language and Communication in Business, (63), 227–243.

https://doi.org/10.7146/hjlcb.vi63.143078

Guo, D., Zhou, W., Li, H., & Wang, M. (2018). Hierarchical LSTM for sign language translation. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), 6845-6852.

https://doi.org/10.1609/aaai.v32i1.12235

Hale, S. (2016). Community interpreting. London: Palgrave Macmillan.

Hasyim, M., Saleh, F., Yusuf, R., et al. (2021). Artificial intelligence: Machine translation accuracy in translating French-Indonesian culinary texts. SSRN Electronic Journal, 12(3), 186-191.

https://doi.org/10.2139/ssrn.3816594

Hatim, B., & Munday, J. (2019). Translation: An advanced resource book (3rd ed.). London: Routledge.

Higgins, J. P. T., & Green, S. (Eds.). (2011). Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration. Assessing risk of bias in a randomized trial (Pages: 205-228). New York: Wiley. https://doi.org/10.1002/9781119536604.ch8

House, J. (2018). Translation: The basics. London: Routledge.

Hutchins, J. (2001). Machine translation and human translation: In competition or in complementation? International Journal of Translation, 13(1-2), 5–20.

https://aclanthology.org/www.mt-archive.info/00/IJT-2001-Hutchins.pdf

Hutchins, J. (2019). Machine translation: Past, present, future. Amsterdam: IOS Press.

Jurafsky, D., & Martin, J. H. (2021). Speech and language processing (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

Jurafsky, D., & Martin, J. H. (2021). Speech and language processing (3rd ed.). London: Pearson.

Kenny, D. (2017). Machine translation and globalization. London: Routledge.

Kiraly, D. (2015). Social constructivist approaches to translator education. London: Routledge.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. EBSE Technical Report, Version 2.3. Durham: University of Durham.

Knight, K. (2017). Artificial intelligence and machine translation. Cambridge: MIT Press.

Ko, S. K., Kim, C. J., Jung, H., & Cho, C. (2019). Neural sign language translation based on human keypoint estimation. Applied Sciences, 9(13), 2683.

https://doi.org/10.3390/app9132683

Koehn, P. (2020). Neural machine translation. Cambridge: Cambridge University Press.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

https://doi.org/10.1038/nature14539

León, C. A. B. (2023). Challenges of artificial intelligence and automated translation in the field of foreign languages. International interdisciplinary congress for professionals and students of foreign languages (1: March 2023, Cartagena de Indias), 27. http://dx.doi.org/10.57799/11227/12456

Lihua, Z. (2022). The relationship between machine translation and human translation is under the influence of artificial intelligence machine translation. Mobile Information Systems, 2022, 9121636.

https://doi.org/10.1155/2022/9121636

LingZhi, W. (2021). Research on the application of artificial intelligence in machine translation. Journal of Artificial Intelligence Practice, 4 1-3.

http://dx.doi.org/10.23977/jaip.2020.040201

Liu, Y. (2022). Application of artificial intelligence technology in computer-aided translation software. Proceedings of SPIE, 12456, 124560Q.

https://doi.org/10.1117/12.2659978

Massardo, I., Carl, M., & Hansen-Schirra, S. (2020). Translation process research and AI. London: Routledge.

Melby, A. K. (1995). The possibility of language: A discussion of the nature of language, with implications for human and machine translation. Amsterdam: John Benjamins Publishing.

Melby, A. K., & Warner, T. (2019). The possibility of language: A discussion on translation and meaning. Amsterdam: John Benjamins.

Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 1–21.

https://doi.org/10.1177/2053951716679679

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097

Moor, J. H. (2006). The nature, importance, and difficulty of machine ethics. IEEE Intelligent Systems, 21(4), 18–21.

https://doi.org/10.1109/MIS.2006.80

Morley, J., Floridi, L., Kinsey, L., & Elhalal, A. (2020). From what to how: An initial review of publicly available AI ethics tools, methods, and research to translate principles into practices. Science and Engineering Ethics, 26(4), 2141-2168.

https://doi.org/10.1007/s11948-019-00165-5

Munday, J. (2016). Introducing translation studies: Theories and applications (4th ed.). London: Routledge.

Muñoz-Basols, J., Neville, C., Lafford, B. A., & Godev, C. (2023). Potentialities of applied translation for language learning in the era of artificial intelligence. Hispania, 106(1), 160-161.

https://doi.org/10.1353/hpn.2023.0023

Nord, C. (2005). Text analysis in translation: Theory, methodology, and didactic application of a model for translation-oriented text analysis (2nd ed.). Amsterdam: Rodopi.

O'Brien, S. (2012). Machine translation and cognitive science. London: Springer.

Olohan, M. (2020). Scientific and technical translation. London: Routledge.

Pöchhacker, F. (2016). Introducing interpreting studies (2nd ed.). London: Routledge.

Prates, M. O. R., Avelar, P. H., & Lamb, L. C. (2020). Assessing gender bias in machine translation: A case study with Google Translate. Neural Computing and Applications, 32(10), 6363-6381.

https://doi.org/10.1007/s00521-019-04144-6

Pym, A. (2010). Exploring translation theories. London: Routledge.

Pym, A., & Torres-Simón, E. (2017). Translation research projects 5. Spain: Intercultural Studies Group.

Ranathunga, S., Lee, E. S. A., Skenduli, M. P., et al. (2023). Neural machine translation for low-resource languages: A survey. ACM Computing Surveys, 56(1), 1-37.

https://doi.org/10.1145/3567592

Risku, H. (2010). A cognitive scientific view on technical communication and translation: Do embodiment and situatedness really make a difference? Target, 22(1), 94–111. https://doi.org/10.1075/target.22.1.06ris

Roberge, J., Senneville, M., & Morin, K. (2020). How to translate artificial intelligence? Myths and justifications in public discourse. Big Data & Society, 7(1), 1-14. https://doi.org/10.1177/2053951720919968

Rustamova, S. (2023). Translation problems and solutions. Journal of Foreign Languages and Linguistics, 5(5), 78-95. https://fll.jdpu.uz/index.php/fll/article/view/7895

Sánchez-Gijón, P., Díaz-Millón, M., & Kenny, D. (2020). Translation technology in accessible workflows. London: Routledge.

Schäffner, C. (2012). Political discourse, media, and translation. Cambridge: Cambridge Scholars Publishing.

Snell-Hornby, M. (2006). The turns of translation studies: New paradigms or shifting viewpoints? Amsterdam: John Benjamins.

Stahl, B. C. (2006). Responsible for research and innovation in artificial intelligence. Cambridge: Cambridge University Press.

Stahlberg, F. (2020). Neural machine translation: A review. Journal of Artificial Intelligence Research, 69, 1-50.

https://doi.org/10.1613/jair.1.12007

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence-to-sequence learning with neural networks. arXiv preprint arXiv:1409.3215. https://doi.org/10.48550/arXiv.1409.3215

Toury, G. (2012). Descriptive translation studies and beyond (Revised ed.). Amsterdam: John Benjamins Publishing.

Tymoczko, M. (2007). Enlarging translation, empowering translators. London: Routledge.

Valentim, R., Drago, I., Mellia, M., et al. (2023). Lost in translation: AI-based generator of cross-language sound-squatting. 2023 IEEE European Symposium on Security and Privacy (EuroS&P), 1-12. https://doi.org/10.1109/EuroSPW59978.2023.00063

van den Hoven, J., & Vermaas, P. E. (2007). Nano-technology and privacy: On continuous surveillance outside the panopticon. Journal of Medicine and Philosophy, 32(3), 283–297. https://doi.org/10.1080/03605310701397040

van der Ploeg, I. (2012). The machine-readable body: Essays on biometrics and the informatization of the body. New York: Springer.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems (NeurIPS), 30, 5998–6008.

https://doi.org/10.48550/arXiv.1706.03762

Venuti, L. (2012). The Translation Studies Reader (3rd ed.). Routledge.

Wang, C. (2022). AI?based heterogeneous large?scale English translation strategy. Mobile Information Systems, 2022, 8344814.

https://doi.org/10.1155/2022/8344814

Way, A. (2018). Machine translation: Where are we at today? In Proceedings of the 21st Annual Conference of the European Association for Machine Translation (pp. 3–14). European Association for Machine Translation.

Xiao, C. (2021). Comparison of differences between artificial intelligence translation and artificial translation. Journal of Physics: Conference Series, 1992(2), 022079.

https://doi.org/10.1088/1742-6596/1992/2/022079

ZAID, A., & Bennoudi, H. (2023). AI vs. Human Translators: Navigating the Complex World of Religious Texts and Cultural Sensitivity. International Journal of Linguistics, Literature and Translation, 6(11), 173-182.

https://doi.org/10.32996/ijllt.2023.6.11.21

Zong, Z. (2018). Research on the relations between machine translation and human translation. Journal of Physics: Conference Series, 1087(6), 062046.

https://doi.org/10.1088/1742-6596/1087/6/062046

Downloads

Published

2025-11-19

How to Cite

Batubara, M. H., Sibarani, B., Murni, S. M., & Aisyah Ginting, S. (2025). A Systematic Literature Review on the Application of Artificial Intelligence in Translation: Challenges, Innovations, and Impact Across Diverse Fields. Journal of Linguistics, Literature, and Language Teaching (JLLLT), 5(1), 67–87. https://doi.org/10.37249/jlllt.v5i1.934